Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.700
Filtrar
1.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578678

RESUMO

Psychosis is characterized by a diminished ability of the brain to distinguish externally driven activity patterns from self-generated activity patterns. Antipsychotic drugs are a class of small molecules with relatively broad binding affinity for a variety of neuromodulator receptors that, in humans, can prevent or ameliorate psychosis. How these drugs influence the function of cortical circuits, and in particular their ability to distinguish between externally and self-generated activity patterns, is still largely unclear. To have experimental control over self-generated sensory feedback, we used a virtual reality environment in which the coupling between movement and visual feedback can be altered. We then used widefield calcium imaging to determine the cell type-specific functional effects of antipsychotic drugs in mouse dorsal cortex under different conditions of visuomotor coupling. By comparing cell type-specific activation patterns between locomotion onsets that were experimentally coupled to self-generated visual feedback and locomotion onsets that were not coupled, we show that deep cortical layers were differentially activated in these two conditions. We then show that the antipsychotic drug clozapine disrupted visuomotor integration at locomotion onsets also primarily in deep cortical layers. Given that one of the key components of visuomotor integration in cortex is long-range cortico-cortical connections, we tested whether the effect of clozapine was detectable in the correlation structure of activity patterns across dorsal cortex. We found that clozapine as well as two other antipsychotic drugs, aripiprazole and haloperidol, resulted in a strong reduction in correlations of layer 5 activity between cortical areas and impaired the spread of visuomotor prediction errors generated in visual cortex. Our results are consistent with the interpretation that a major functional effect of antipsychotic drugs is a selective alteration of long-range layer 5-mediated communication.


Assuntos
Antipsicóticos , Clozapina , Humanos , Animais , Camundongos , Antipsicóticos/farmacologia , Clozapina/farmacologia , Haloperidol/farmacologia , Encéfalo/fisiologia , Aripiprazol/farmacologia
2.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396865

RESUMO

Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.


Assuntos
Antipsicóticos , Clozapina , Ratos , Masculino , Feminino , Animais , Antipsicóticos/farmacologia , Antipsicóticos/metabolismo , Clozapina/farmacologia , Haloperidol/farmacologia , Hepcidinas/metabolismo , Ratos Sprague-Dawley , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Glucose/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Encéfalo/metabolismo , Perilipinas/metabolismo
3.
Brain Res ; 1830: 148815, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387714

RESUMO

Antipsychotic drugs (APDs) are the primary pharmacological treatment for schizophrenia, a complex disorder characterized by altered neuronal connectivity. Atypical or second-generation antipsychotics, such as Risperidone (RSP) and Clozapine (CZP) predominantly block dopaminergic D2 and serotonin receptor 2A (5-HT2A) neurotransmission. Both compounds also exhibit affinity for the 5-HT7R, with RSP acting as an antagonist and CZP as an inverse agonist. Our study aimed to determine whether RSP and CZP can influence neuronal morphology through a 5-HT7R-mediated mechanism. Here, we demonstrated that CZP promotes neurite outgrowth of early postnatal cortical neurons, and the 5-HT7R mediates its effect. Conversely, RSP leads to a reduction of neurite length of early postnatal cortical neurons, in a 5-HT7R-independent way. Furthermore, we found that the effects of CZP, mediated by 5-HT7R activation, require the participation of ERK and Cdk5 kinase pathways. At the same time, the modulation of neurite length by RSP does not involve these pathways. In conclusion, our findings provide valuable insights into the morphological changes induced by these two APDs in neurons and elucidate some of the associated molecular pathways. Investigating the 5-HT7R-dependent signaling pathways underlying the neuronal morphogenic effects of APDs may contribute to the identification of novel targets for the treatment of schizophrenia.


Assuntos
Antipsicóticos , Clozapina , Antipsicóticos/farmacologia , Agonismo Inverso de Drogas , Neurônios/metabolismo , Receptores de Serotonina/metabolismo , Neuritos/metabolismo , Clozapina/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo
4.
Neurotherapeutics ; 21(2): e00334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368170

RESUMO

Psychosis in Parkinson's disease is a common phenomenon associated with poor outcomes. To clarify the pathophysiology of this condition and the mechanisms of antipsychotic treatments, we have here characterized the neurophysiological brain states induced by clozapine, pimavanserin, and the novel prospective antipsychotic mesdopetam in a rodent model of Parkinson's disease psychosis, based on chronic dopaminergic denervation by 6-OHDA lesions, levodopa priming, and the acute administration of an NMDA antagonist. Parallel recordings of local field potentials from eleven cortical and sub-cortical regions revealed shared neurophysiological treatment effects for the three compounds, despite their different pharmacological profiles, involving reversal of features associated with the psychotomimetic state, such as a reduction of aberrant high-frequency oscillations in prefrontal structures together with a decrease of abnormal synchronization between different brain regions. Other drug-induced neurophysiological features were more specific to each treatment, affecting network oscillation frequencies and entropy, pointing to discrete differences in mechanisms of action. These findings indicate that neurophysiological characterization of brain states is particularly informative when evaluating therapeutic mechanisms in conditions involving symptoms that are difficult to assess in rodents such as psychosis, and that mesdopetam should be further explored as a potential novel antipsychotic treatment option for Parkinson psychosis.


Assuntos
Antipsicóticos , Clozapina , Doença de Parkinson , Éteres Fenílicos , Piperidinas , Propilaminas , Transtornos Psicóticos , Ureia/análogos & derivados , Animais , Clozapina/farmacologia , Doença de Parkinson/complicações , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Roedores , Estudos Prospectivos , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/complicações
5.
Biol Pharm Bull ; 47(2): 478-485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382927

RESUMO

The medial prefrontal cortex (mPFC) is associated with various behavioral controls via diverse projections to cortical and subcortical areas of the brain. Dysfunctions and modulations of this circuitry are related to the pathophysiology of schizophrenia and its pharmacotherapy, respectively. Clozapine is an atypical antipsychotic drug used for treatment-resistant schizophrenia and is known to modulate neuronal activity in the mPFC. However, it remains unclear which prefrontal cortical projections are activated by clozapine among the various projection targets. To identify the anatomical characteristics of neurons activated by clozapine at the mesoscale level, we investigated the brain-wide projection patterns of neurons with clozapine-induced c-Fos expression in the mPFC. Using a whole-brain imaging and virus-mediated genetic tagging of activated neurons, we found that clozapine-responsive neurons in the mPFC had a wide range of projections to the mesolimbic, amygdala and thalamic areas, especially the mediodorsal thalamus. These results may provide key insights into the neuronal basis of the therapeutic action of clozapine.


Assuntos
Antipsicóticos , Clozapina , Ratos , Animais , Clozapina/farmacologia , Ratos Sprague-Dawley , Antipsicóticos/farmacologia , Córtex Pré-Frontal , Neurônios
6.
J Neurochem ; 168(3): 238-250, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38332572

RESUMO

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Assuntos
Antipsicóticos , Clozapina , Animais , Humanos , Clozapina/farmacologia , Haloperidol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Proteoma/metabolismo , N-Metilaspartato , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteômica , Antipsicóticos/farmacologia , Encéfalo/metabolismo
7.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262736

RESUMO

Stress-inducing events during pregnancy are associated with aberrant neurodevelopment resulting in adverse psychiatric outcomes, including autism spectrum disorder (ASD). While numerous preclinical models for the study of ASD are frequently generated using C57BL/6J mice, few studies have investigated the effects of prenatal stress on this genetic background. In the current manuscript, we stressed C57BL/6 dams during gestation and examined numerous behavioral and molecular endophenotypes in the adult male and female offspring to characterize the resultant phenotype as compared with offspring born from nonstressed (NS) dams. Adult mice born from prenatal restraint stressed (PRS) dams demonstrated reduced sociability and reciprocal social interaction along with increased marble burying behaviors relative to mice born from nonstressed control dams. Differential expression of genes related to excitatory and inhibitory neurotransmission was evaluated in the medial prefrontal cortex, amygdala, hippocampus, nucleus accumbens and caudate putamen via qRT-PCR. The male PRS mouse behavioral phenotype coincided with aberrant expression of glutamate and GABA marker genes (e.g., Grin1, Grin2b, Gls, Gat1, Reln) in neural substrates of social behavior. Rescue of the male PRS sociability deficit by a known antipsychotic with epigenetic properties (i.e., clozapine (5 mg/kg) + 18 hr washout) indicated possible epigenetic regulation of genes that govern sociability. Clozapine treatment increased the expression levels of genes involved in DNA methylation, histone methylation, and histone acetylation in the nucleus accumbens. Identification of etiology-specific mechanisms underlying clinically relevant behavioral phenotypes may ultimately provide novel therapeutic interventions for the treatment of psychiatric disorders including ASD.


Assuntos
Transtorno do Espectro Autista , Clozapina , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Masculino , Feminino , Animais , Camundongos , Clozapina/farmacologia , Histonas/metabolismo , Transtorno do Espectro Autista/genética , Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal/genética , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia , Modelos Animais de Doenças
8.
Free Radic Biol Med ; 212: 384-402, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38182072

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.


Assuntos
Clozapina , Ferroptose , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Camundongos , Humanos , Animais , Rotenona/toxicidade , Neurônios Dopaminérgicos/metabolismo , Clozapina/farmacologia , Clozapina/metabolismo , Fármacos Neuroprotetores/farmacologia , Neuroblastoma/metabolismo , Síndromes Neurotóxicas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ferro/metabolismo , Óxidos/metabolismo , Óxidos/farmacologia
9.
Psychopharmacology (Berl) ; 241(1): 89-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792024

RESUMO

RATIONALE: Clozapine N-oxide (CNO) has been developed as a ligand to selectively activate designer receptors exclusively activated by designer drugs (DREADDs). However, previous studies have revealed that peripherally injected CNO is reverse-metabolized into clozapine, which, in addition to activating DREADDs, acts as an antagonist at various neurotransmitter receptors, suggesting potential off-target effects of CNO on animal physiology and behaviors. Recently, second-generation DREADD agonists compound 21 (C21) and JHU37160 (J60) have been developed, but their off-target effects are not fully understood. OBJECTIVES: The present studies assessed the effect of novel DREADD ligands on reward-seeking behavior. METHODS: We first tested the possible effect of acute i.p. injection of low-to-moderate (0.1, 0.3, 1, 3 mg/kg) of CNO, C21, and J60 on motivated reward-seeking behavior in wild-type mice. We then examined whether a high dose (10 mg/kg) of these drugs might be able to alter responding. RESULTS: Low-to-moderate doses of all drugs and a high dose of CNO or C21 did not alter operant lick responding for a reward under a progressive ratio schedule of reinforcement, in which the number of operant lick responses to obtain a reward increases after each reward collection. However, high-dose J60 resulted in a total lack of responding that was later observed in an open field arena to be due to a sedative effect. CONCLUSIONS: This study provides definitive evidence that commonly used doses of CNO, C21, and J60 have negligible off-target effects on motivated reward-seeking but urges caution when using high doses of J60 due to sedative effects.


Assuntos
Clozapina , Drogas Desenhadas , Camundongos , Animais , Clozapina/farmacologia , Recompensa , Drogas Desenhadas/farmacologia
10.
J Clin Psychopharmacol ; 44(1): 16-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38100777

RESUMO

BACKGROUND: Preclinical and clinical investigations have revealed deficits in cortical inhibition in individuals with schizophrenia. Transcranial magnetic stimulation, a commonly used noninvasive measurement technique, is used for assessing these deficits. Limited research has been conducted on the effects of antipsychotic medications on cortical inhibition. This study aimed to evaluate the effects of clozapine on cortical inhibition with transcranial magnetic stimulation longitudinally and compare it with unaffected controls. METHODS: Ten patients who started clozapine were assessed at baseline, with 8 reassessed after 4 months. Eight age- and sex-matched unaffected controls were included. Psychopathology, neurocognitive performance, formal thought disorder, and disability were assessed, and the cortical excitability parameters (resting motor threshold, cortical silent period, short-interval intracortical inhibition, intracortical facilitation, and short-latency afferent inhibition [SAI]) were measured at baseline and four months after clozapine treatment. RESULTS: Resting motor threshold, ICF, and SAI were significantly different between patients and controls at baseline, whereas resting motor threshold, SAI, and ICF became similar to controls after clozapine with only ICF having a trend for significance. Clozapine prolonged cortical silent period significantly in the patients. CONCLUSIONS: This is the first study to investigate the effect of clozapine on SAI, a potential cholinergic biomarker, and the first follow-up study to investigate the relationship between the effects of clozapine on cortical inhibition and cognition. Clozapine seems to cause an increase in cortical inhibition through GABAergic and possibly cholinergic mechanisms. However, additional follow-up studies with larger sample sizes are required to reach more robust conclusions.


Assuntos
Clozapina , Esquizofrenia , Humanos , Estimulação Magnética Transcraniana/métodos , Seguimentos , Clozapina/farmacologia , Esquizofrenia/tratamento farmacológico , Colinérgicos
11.
Brain Behav Immun ; 115: 223-228, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832895

RESUMO

BACKGROUND AND HYPOTHESIS: Use of clozapine in treatment-resistant schizophrenia is often limited due to risk of adverse effects. Cross-sectional associations between clozapine treatment and low immunoglobulin levels have been reported, however prospective studies are required to establish temporal relationships. We tested the hypothesis that reductions in immunoglobulin levels would occur over the first 6 months following initiation of clozapine treatment. Relationships between immunoglobulin levels and symptom severity over the course of clozapine treatment were also explored. DESIGN: This prospective observational study measured immunoglobulin (Ig) levels (A, M and G) in 56 patients with treatment-resistant schizophrenia at 6-, 12- and 24-weeks following initiation with clozapine. Clinical symptoms were also measured at 12 weeks using the positive and negative syndrome scale (PANSS). RESULTS: IgA, IgG and IgM all decreased during clozapine treatment. For IgA and IgG the reduction was significant at 24 weeks (IgA: ß = -32.66, 95% CI = -62.38, -2.93, p = 0.03; IgG: ß = -63.96, 95% CI = -118.00, -9.31, p = 0.02). For IgM the reduction was significant at 12 and 24 weeks (12 weeks: ß = -23.48, 95% CI = -39.56, -7.42, p = 0.004; 24 weeks: ß = -33.12, 95 %CI = -50.30, -15.94, p = <0.001). Reductions in IgA and IgG during clozapine treatment were correlated with reductions in PANSS-total over 12 weeks (n = 32, IgA r = 0.59, p = 0.005; IgG r = 0.48, p = 0.03). CONCLUSIONS: The observed reductions in immunoglobulin levels over six months of clozapine treatment add further evidence linking clozapine to secondary antibody deficiency. Associations between Ig reduction and symptom improvement may however indicate that immune mechanisms contribute to both desirable and undesirable effects of clozapine.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/uso terapêutico , Clozapina/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/complicações , Antipsicóticos/efeitos adversos , Estudos Transversais , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
12.
Psiquiatr. biol. (Internet) ; 30(3): 100415, sep.-dic. 2023.
Artigo em Espanhol | IBECS | ID: ibc-228301

RESUMO

Esta guía internacional propone mejorar los prospectos de la clozapina en todo el mundo mediante la inclusion de información sobre la titulación del fármaco en función de la ascendencia del paciente. Las bases de datos de reacciones adversas a medicamentos (RAM) sugieren que la clozapina es el tercer fármaco más tóxico en los Estados Unidos de América (EE. UU.) y que produce una mortalidad por neumonía en todo el mundo 4 veces mayor que la correspondiente a la agranulocitosis o la miocarditis. El rango terapéutico de referencia para las concentraciones séricas estables de clozapina es estrecho, de 350 a 600 ng/ml, con potencial de toxicidad y reacciones adversas más fecuentes a medida que aumentan las concentraciones. La clozapina se metaboliza principalmente por CYP1A2 (las mujeres no fumadoras requieren la dosis más baja y los hombres fumadores la dosis más alta). A través de la conversión fenotípica, la prescripción conjunta de inhibidores del metabolismo de la clozapina (incluidos los anticonceptivos orales y el valproato), la obesidad o la inflamación con elevaciones de la proteína C reactiva (PCR), pueden convertir al paciente en un metabolizador lento/pobre (MP). Las personas de ascendencia asiática (de Pakistán a Japón) o los habitantes originarios de las Américas tienen menor actividad de CYP1A2 y requieren dosis más bajas de clozapina para alcanzar concentraciones de 350 ng/ml. En los EE. UU. se recomiendan dosis diarias de 300-600 mg/día. La dosificación personalizada lenta puede prevenir RAM tempranas (incluidos el síncope, la miocarditis y la neumonía). La esencia de esta guía se fundamenta en 6 esquemas de titulaciones personalizadas para pacientes hospitalizados...(AU)


This is the Spanish translation of an international guideline which proposes improving clozapine package inserts worldwide by using ancestry-based: 1) dosing and 2) titration. Adverse drug reaction (ADR) databases suggest clozapine: 1) is the third most toxic drug in the United States (US), and 2) produces worldwide pneumonia mortality four times greater than that of agranulocytosis or myocarditis. For trough steady-state clozapine serum concentrations, the therapeutic reference range is narrow, from 350 to 600 ng/mL with the potential for toxicity and ADRs as concentrations increase. Clozapine is mainly metabolized by CYP1A2 (female non-smokers require the lowest dose and male smokers the highest dose). Poor metabolizer (PM) status through phenotypic conversion is associated with co-prescription of inhibitors (including oral contraceptives and valproate), obesity or inflammation with C-reactive protein (CRP) elevations. People with ancestry from Asia (Pakistan to Japan) or the Americas’ original inhabitants have lower CYP1A2 activity and require lower clozapine doses to reach concentrations of 350 ng/ml. Daily doses of 300-600 mg/day are recommended in the US. Slow personalized titration may prevent early ADRs (including syncope, myocarditis and pneumonia). The core of this guideline consists of six personalized titration schedules for inpatients...(AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Clozapina/administração & dosagem , Titulometria , Etnicidade , Proteína C-Reativa , Clozapina/metabolismo , Clozapina/farmacologia , Clozapina/uso terapêutico , Titulometria/classificação , Titulometria/métodos , Titulometria/estatística & dados numéricos , Proteína C-Reativa/administração & dosagem , Proteína C-Reativa/efeitos adversos , Proteína C-Reativa/efeitos dos fármacos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Proteína C-Reativa/uso terapêutico
13.
Redox Biol ; 67: 102915, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866162

RESUMO

Long-term treatment of schizophrenia with clozapine (CLZ), an atypical antipsychotic drug, is associated with an increased incidence of metabolic disorders mediated by poorly understood mechanisms. We herein report that CLZ, while slowing down the morphological changes and lipid accumulation occurring during SW872 cell adipogenesis, also causes an early (day 3) inhibition of the expression/nuclear translocation of CAAT/enhancer-binding protein ß and peroxisome proliferator-activated receptor γ. Under the same conditions, CLZ blunts NADPH oxidase-derived reactive oxygen species (ROS) by a dual mechanism involving enzyme inhibition and ROS scavenging. These effects were accompanied by hampered activation of the nuclear factor (erythroid-derived2)-like 2 (Nrf2)-dependent antioxidant responses compared to controls, and by an aggravated formation of mitochondrial superoxide. CLZ failed to exert ROS scavenging activities in the mitochondrial compartment but appeared to actively scavenge cytosolic H2O2 derived from mitochondrial superoxide. The early formation of mitochondrial ROS promoted by CLZ was also associated with signs of mitochondrial dysfunction. Some of the above findings were recapitulated using mouse embryonic fibroblasts. We conclude that the NADPH oxidase inhibitory and cytosolic ROS scavenging activities of CLZ slow down SW872 cell adipogenesis and suppress their Nrf2 activation, an event apparently connected with increased mitochondrial ROS formation, which is associated with insulin resistance and metabolic syndrome. Thus, the cellular events characterised herein may help to shed light on the more detailed molecular mechanisms explaining some of the adverse metabolic effects of CLZ.


Assuntos
Clozapina , Lipossarcoma , Humanos , Animais , Camundongos , NADPH Oxidases/metabolismo , Adipogenia , Espécies Reativas de Oxigênio/metabolismo , Clozapina/farmacologia , Clozapina/metabolismo , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Lipossarcoma/metabolismo
14.
Psychopharmacology (Berl) ; 240(10): 2101-2110, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530882

RESUMO

RATIONALE: Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. OBJECTIVES: Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. METHODS: Male and female TH:Cre + rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons of TH:Cre + rats. All rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in counterbalanced order. RESULTS: All three CNO doses reduced operant rewards earned in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest J60 dose tested significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre + rats were correlated and were present in both sexes. CONCLUSIONS: Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.


Assuntos
Clozapina , Drogas Desenhadas , Ratos , Masculino , Feminino , Animais , Área Tegmentar Ventral , Neurônios Dopaminérgicos/metabolismo , Clozapina/farmacologia
15.
Psychopharmacology (Berl) ; 240(12): 2545-2560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594501

RESUMO

RATIONALE: Repeated chemogenetic stimulation is often employed to study circuit function and behavior. Chronic or repeated agonist administration can result in homeostatic changes, but this has not been extensively studied with designer receptors exclusively activated by designer drugs (DREADDs). OBJECTIVES: We sought to evaluate the impact of repeated DREADD activation of dopaminergic (DA) neurons on basal behavior, amphetamine response, and spike firing. We hypothesized that repeated DREADD activation would mimic compensatory effects that we observed with genetic manipulations of DA neurons. METHODS: Excitatory hM3D(Gq) DREADDs were virally expressed in adult TH-Cre and WT mice. In a longitudinal design, clozapine N-oxide (CNO, 1.0 mg/kg) was administered repeatedly. We evaluated basal and CNO- or amphetamine (AMPH)-induced locomotion and stereotypy. DA neuronal activity was assessed using in vivo single-unit recordings. RESULTS: Acute CNO administration increased locomotion, but basal locomotion decreased after repeated CNO exposure in TH-CrehM3Dq mice relative to littermate controls. Further, after repeated CNO administration, AMPH-induced hyperlocomotion and stereotypy were diminished in TH-CrehM3Dq mice relative to controls. Repeated CNO administration reduced DA neuronal firing in TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the decreases in basal locomotion and AMPH response. CONCLUSIONS: We found that repeated DREADD activation of DA neurons evokes homeostatic changes that should be factored into the interpretation of chronic DREADD applications and their impact on circuit function and behavior. These effects are likely to also be seen in other neuronal systems and underscore the importance of studying neuroadaptive changes with chronic or repeated DREADD activation.


Assuntos
Anfetamina , Clozapina , Camundongos , Animais , Anfetamina/farmacologia , Neurônios Dopaminérgicos , Clozapina/farmacologia
16.
Psychopharmacology (Berl) ; 240(8): 1667-1676, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37318540

RESUMO

RATIONALE: Availability of the dopamine and noradrenaline precursor tyrosine is critical for normal functioning, and deficit in tyrosine transport across cell membrane and the blood-brain barrier has been reported in bipolar disorder and schizophrenia. Clozapine and lithium are two psychoactive agents used to treat psychosis, mood disorders and suicidal behavior, but their mechanism of action remains largely unknown. OBJECTIVE: To characterize immediate and delayed differences in tyrosine uptake between healthy controls (HC) and bipolar patients (BP) and see if these differences could be normalized by either clozapine, lithium or both. A second objective was to see if clozapine and lithium have additive, antagonistic or synergistic effects in this. METHOD: Fibroblasts from five HC and five BP were incubated for 5 min or 6 h with clozapine, lithium, or combination of both. Radioactive labelled tyrosine was used to quantify tyrosine membrane transport. RESULTS: There was significantly reduced tyrosine uptake at baseline in BP compared to HC, a deficit that grew with increasing incubation time. Clozapine selectively increased tyrosine uptake in BP and abolished the deficit seen under baseline conditions, while lithium had no such effect. Combination treatment with clozapine and lithium was less effective than when clozapine was used alone. CONCLUSIONS: There was significant deficit in tyrosine transport in BP compared to HC that was reversed by clozapine but not lithium. Clozapine was more effective when used alone than when added together with lithium. Potential clinical implications of this will be discussed.


Assuntos
Antipsicóticos , Transtorno Bipolar , Clozapina , Transtornos Psicóticos , Humanos , Transtorno Bipolar/tratamento farmacológico , Clozapina/farmacologia , Clozapina/uso terapêutico , Lítio , Transtornos Psicóticos/tratamento farmacológico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico
17.
J Psychopharmacol ; 37(10): 1023-1029, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37377097

RESUMO

BACKGROUND: Between 25% and 50% of patients suffering from treatment-resistant schizophrenia fail to achieve a clinical response with clozapine. The rapid identification and treatment of this subgroup of patients represents a challenge for healthcare practice. AIMS: To evaluate the relationship between metabolic alterations and the clinical response to clozapine. METHODS: A multicenter, observational, case-control study was performed. Patients diagnosed with schizophrenia treated with clozapine were eligible (minimum dose 400 mg/d for at least 8 weeks and/or clozapine plasma levels ⩾ 350 µg/mL). According to the Positive and Negative Syndrome Scale (PANSS) total score, patients were classified as clozapine-responsive (CR) (<80 points) or clozapine non-responsive (CNR) (⩾80 points). Groups were compared based on demographic and treatment-related characteristics, together with body mass index (BMI), waist circumference, insulin, leptin, and C-reactive protein plasma levels. Plasma levels of clozapine and its main metabolite, nor-clozapine, were measured in all the participants. In addition, the potential relationship between PANSS scores and leptin or insulin plasma levels was assessed. RESULTS: A total of 46 patients were included: 25 CR and 21 CNR. BMI and waist circumference, fasting insulin and leptin plasma levels were lower in the CNR group, while C-reactive protein was not different. Moreover, significant negative correlations were observed between PANSS positive and general psychopathology subscores, on one hand, and insulin and leptin plasma levels, on the other hand, as well as between PANSS negative subscores and leptin plasma levels. CONCLUSIONS: Our results suggest that the lack of metabolic effect induced by clozapine is associated with the lack of clinical response.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/farmacologia , Esquizofrenia/metabolismo , Índice de Massa Corporal , Insulina , Antipsicóticos/uso terapêutico , Antipsicóticos/farmacologia , Leptina , Circunferência da Cintura , Estudos de Casos e Controles
18.
Behav Brain Res ; 452: 114553, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37352979

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) are a promising tool for analyzing neural circuitry, and improved DREADD-selective ligands continue to be developed. Relative to clozapine-N-oxide (CNO), JHU37160 is a selective DREADD agonist recently shown to exhibit higher blood brain barrier penetrance and DREADD selectivity in vivo; however, relatively few studies have characterized the behavioral effects of systemic JHU37160 administration in animals. Here, we report a dose-dependent anxiogenic effect of systemic JHU37160 in male Wistar and Long-Evans rats, regardless of DREADD expression, with no impact on locomotor behavior. These results suggest that high dose (1 mg/kg) JHU37160 should be avoided when performing chemogenetic experiments designed to evaluate circuit manipulation on anxiety-like behavior in rats.


Assuntos
Barreira Hematoencefálica , Clozapina , Ratos , Masculino , Animais , Ratos Wistar , Ratos Long-Evans , Barreira Hematoencefálica/metabolismo , Clozapina/farmacologia
19.
Eur J Pharmacol ; 953: 175802, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295763

RESUMO

Antipsychotic drugs of different chemical/pharmacological families show preferential dopamine (DA) D2 receptor (D2-R) vs. D1 receptor (D1-R) affinity, with the exception of clozapine, the gold standard of schizophrenia treatment, which shows a comparable affinity for both DA receptors. Here, we examined the ability of Lu AF35700 (preferential D1-R>D2-R antagonist), to reverse the alterations in thalamo-cortical activity induced by phencyclidine (PCP), used as a pharmacological model of schizophrenia. Lu AF35700 reversed the PCP-induced alteration of neuronal discharge and low frequency oscillation (LFO, 0.15-4 Hz) in thalamo-cortical networks. Likewise, Lu AF35700 prevented the increased c-fos mRNA expression induced by PCP in thalamo-cortical regions of awake rats. We next examined the contribution of D1-R and D2-R to the antipsychotic reversal of PCP effects. The D2-R antagonist haloperidol reversed PCP effects on thalamic discharge rate and LFO. Remarkably, the combination of sub-effective doses of haloperidol and SCH-23390 (DA D1-R antagonist) fully reversed the PCP-induced fall in thalamo-cortical LFO. However, unlike with haloperidol, SCH-23390 elicited different degrees of potentiation of the effects of low clozapine and Lu AF35700 doses. Overall, the present data support a synergistic interaction between both DA receptors to reverse the PCP-induced alterations of oscillatory activity in thalamo-cortical networks, possibly due to their simultaneous blockade in direct and indirect pathways of basal ganglia. The mild potentiation induced by SCH-23390 in the case of clozapine and Lu AF35700 suggests that, at effective doses, these agents reverse PCP effects through the simultaneous blockade of both DA receptors.


Assuntos
Antipsicóticos , Clozapina , Ratos , Animais , Fenciclidina/farmacologia , Clozapina/farmacologia , Haloperidol/farmacologia , Dopamina , Antipsicóticos/farmacologia , Antagonistas de Dopamina/farmacologia , Receptores de Dopamina D1
20.
Brain Res ; 1814: 148446, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301424

RESUMO

Hippocampal phase precession, wherein there is a systematic shift in the phase of neural firing against the underlying theta activity, is proposed to play an important role in the sequencing of information in memory. Previous research shows that the starting phase of precession is more variable in rats following maternal immune activation (MIA), a known risk factor for schizophrenia. Since starting phase variability has the potential to disorganize the construction of sequences of information, we tested whether the atypical antipsychotic clozapine, which ameliorates some cognitive deficits in schizophrenia, alters this aspect of phase precession. Either saline or clozapine (5 mg/kg) was administered to rats and then CA1 place cell activity was recorded from the CA1 region of the hippocampus as the animals ran around a rectangular track for food reward. When compared to saline trials, acute administration of clozapine did not affect any place cell properties, including those related to phase precession, in either control or MIA animals. Clozapine did, however, produce a reduction in locomotion speed, indicating that its presence had some effect on behaviour. These results help to constrain explanations of phase precession mechanisms and their potential role in sequence learning deficits.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Ratos , Animais , Clozapina/farmacologia , Potenciais de Ação/fisiologia , Hipocampo , Antipsicóticos/farmacologia , Esquizofrenia/tratamento farmacológico , Ritmo Teta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...